home *** CD-ROM | disk | FTP | other *** search
- }!@seeAlso 1factors
- @seeAlso 1highest common factor
- @seeAlso 1prime factors
- @seeAlso 1multiples
-
-
-
-
-
- '*************************************NUMBERS***********************
- '***************************************************************************
- '*******************LOWEST COMMON MULTIPLE****************
-
- @atGraphic 5,10
- @Picture numbers\n0107a.bmp
-
-
-
-
- @at 0,5
- #<lowest common multiple#
-
-
- @PlaySoundFile n010701.wav
-
-
- @animate BabStand
-
- @At 52,20
-
- @Definition
- For two or more numbers, the #Blowest#
- #Bcommon multiple# is the number with
- the #Blowest value# which can be
- @At 10,
- divided exactly by #Ball# the given numbers.
-
- @Wait 6.5
-
- @animate BabPointUp,BabPointWave,babPointDown
-
-
-
-
- @prompt
- @at 10,69
- @keyPoint 9999,using lowest common multiples (part 1)
- @PlaySoundFile n010702.wav
-
- @animate BabPointUp,BabPointWave,babPointDown
-
- To add or subtract fractions you first need to
- find a common denominator.This can be done
- by multiplying all the denominators together.
-
- @Wait 0.5
- @At ,+3
- #^3#ix# #s+# #^2#ix# - #^ #ix# #s+# #^3#ix#
-
-
- #T 2#T 3#T 4#T 8
- @At ,-23
- #T__#T__#T__#T___
-
-
- @Wait 0.5
- @At 80,135
- #B2# ╫ #B3# ╫ #B4# ╫ #B8# = 192
- @Wait 0.5
-
- @At 10,150
- Now work out the new numerator for each
- fraction like this:
-
- @Wait 0.5
- @At 25,180
- 192 ╫ 3#^#ix# = 288#ix#
- #T2
- @At 56,181
- ___
-
- @Wait 0.5
- @At 140,180
- 192 ╫ 2#^#ix# = 128#ix#
- #T3
- @At 171,181
- ___
-
- @Wait 0.5
- @At 25,205
- 192 ╫ #^#ix# = 48#ix#
- #T4
- @At 56,205
- __
-
- @Wait 0.5
- @At 140,205
- 192 ╫ 3#^#ix# = 72#ix#
- #T8
- @At 171,205
- ___
-
- @prompt
- @keyPoint 9999,using lowest common multiples (part 2)
-
- @animate BabPointUp,BabPointWave,babPointDown
-
- So the calculation can be written as:
- @Wait 0.5
- @At 35,90
- = 288#ix# + 128#^#ix# - 48#ix# + 72#ix#
- #T 192
- @At 49,90
- ____________________________
-
- @Wait 0.5
-
- @At 100,120
- = #^440#ix#
- #T192#T
- @At 115,120
- ____
-
- @Wait 0.5
- @At 100,150
- = #^55#ix#
- #T24
-
- @At 115,150
- ____
-
- @Wait 0.5
- @At 10,180
- However this involves a lot of calculation.
-
-
- @prompt
- @keyPoint 9999,using lowest common multiples (part 3)
- @PlaySoundFile n010703.wav
-
- @animate BabPointUp,BabPointWave,babPointDown
-
-
- A far easier method is to find the lowest
- common multiple of the denominators
- @Wait 0.5
- #^3#ix# #s+# #^2#ix# - #^ #ix# #s+# #^3#ix#
-
-
- #T 2#T 3#T 4#T 8
- @At ,-23
- #T__#T__#T__#T___
-
- @Wait 0.5
- @At 10,125
- The lowest common multiple = #B24#
-
-
- @Wait 0.5
- @At 10,142
- Now work out the new numerator for each
- fraction like this:
-
- @Wait 0.5
- @At 25,170
- 24 ╫ 3#^#ix# = 36#ix#
- #T2
- @At 50,170
- ___
- @Wait 0.5
- @At 140,170
- 24 ╫ 2#^#ix# = 16#ix#
- #T3
- @At 164,170
- ___
- @Wait 0.5
- @At 25,195
- 24 ╫ #^#ix# = 6#ix#
- #T4
- @At 50,196
- __
- @Wait 0.5
- @At 140,196
- 24 ╫ 3#^#ix# = 9#ix#
- #T8
- @At 164,196
- ___
- @prompt
- @keyPoint 9999,using lowest common multiples (part 4)
-
- @animate BabPointUp,BabPointWave,babPointDown
-
-
- So the calculation can be written as:
- @At 35,90
- = 36#ix# + 16#^#ix# - 6#ix# + 9#ix#
- #T 24
- @At 49,90
- _________________________
-
- @Wait 0.5
-
- @At 100,120
- = #^55#ix#
- #T24#T
- @At 115,120
- ____
-
-
-
- @prompt
- @method
-
- @PlaySoundFile n010704.wav
-
- @At 10,70
- Find the lowest common multiple of 6, 10
- and 12.
-
- To find the lowest common multiple of a set of
- numbers you need to draw up a list of the
- multiples of each until you find one common
- to all the lists.
-
-
-
-
- '@prompt
- @keyPoint 185,multiply by 2
- @Wait 0.25
-
- @PlaySoundFile n010705.wav
-
-
-
- @animate BabStand,BabStickDown,BabGetCalculator,BabCalculate
-
-
-
- @At ,+75
- #BKey Step One#
- First, #K185,*multiply by 2# to get the list going.
- @At ,+10
- @Wait 0.5
- #b6# #B10# #B12#
- #^ #^ #^
- @Wait 0.25
- #T╫2=12 #T╫2=20 #T╫2=24
-
-
-
- @prompt
- @method
-
-
-
-
- @keyPoint 186,multiply by one more than last time
- @PlaySoundFile n010706.wav
-
- @Wait 0.25
-
-
- @animate BabCalculate,BabPutCalculator,BabStickUp,BabStand
-
- #BKey Step Two#
- @Wait 0.25
- Then, #K186,*multiply by one more than last time#
- #^ #^ #^ #^ #^ #^
-
- @Wait 0.25
- @At ,-12
- #b6# #B10# #B12#
-
- @Wait 0.25
- #T╫2#T=12 #T╫2#T= 20 #T╫2#T= 24
- @At ,-1
- @Wait 0.25
- #T╫3#T= 18 #T╫3#T= 30 #T╫3#T= 36
- @At ,-1
- @Wait 0.25
- #T╫4#T= 24 #T╫4#T= 40 #T╫4#T= 48
- @At ,-1
- @Wait 0.25
- #T╫5#T= 30 #T╫5#T= 50 #T╫#B5##T= #B60#
- @At ,-1
- @Wait 0.25
- #T╫6#T= 36 #T╫#B6##T= #B60# #T╫6#T= 72
- @At ,-1
- @Wait 0.25
- #T╫7#T= 42 #T╫7#T= 70 #T╫7#T= 84
- @At ,-1
- @Wait 0.25
- #T╫8#T= 48 #T╫8#T= 80 #T╫8#T= 96
- @At ,-1
- @Wait 0.25
- #T╫9#T= 54 #T╫9#T= 90 #T╫9#T= 108
- @At ,-1
- @Wait 0.25
- #T╫#B10##T= #B60##T╫10#T= 100#T╫10#T= 120
- @Wait 0.5
- Repeat until you find the #Blowest common#
- #Bmultiple#. The lowest common multiple = #B60#.
-
-
- @prompt
- @method
-
-
- @PlaySoundFile n010707.wav
-
- @At 10,70
-
- The previous method involves a lot of working
- out. For simple numbers you can often use trial
- and improvement methods more quickly and
- easily. There is another method that works
- well, particularly for larger numbers:
-
-
-
-
- '@prompt
- @keyPoint 187,find the prime factors of each number
-
-
- @Wait 0.5
- @PlaySoundFile n010708.wav
-
-
- @animate BabStand,BabStickDown,BabGetCalculator,BabCalculate
-
-
- @At ,+65
- #BKey Step One#
- @Wait 0.25
- #K187,*find the prime factors of each number#.
- @Wait 0.25
- #^#B6# #^#B10# #^#B12#
- @Wait 0.5
- @At ,+5
- #T =#T =#T =
- @Wait 0.5
- @At ,+5
-
- 2 ╫ 2 ╫ 3
- @Wait 0.5
- @At ,+5
- #B2# ╫ #B3# #B2# ╫ #B5# #B2ê# ╫ #B3#
-
-
- @prompt
-
- @method
-
-
- @keyPoint 188,find the product
-
- @PlaySoundFile n010709.wav
-
-
- @animate BabCalculate,BabCalculate,BabPutCalculator,BabStickUp,BabStand
-
- #BKey Step Two#
- To find the #Blowest common multiple#, take
- the highest power of each prime factor and
- #K188,*find the product#.
- @At ,+2
- #^#B6# #^#B10# #^#B12#
- '@At ,+1
- @Wait 0.5
- #T =#T =#T =
- '@At ,+1
- @Wait 0.5
- 2 ╫ 2 ╫ 3
- '@At ,+1
- @Wait 0.5
- 2 ╫ #B3# 2 ╫ #B5# #B2ê# ╫ 3
- @Wait 0.25
- @At ,+1
- Take each #Bprime factor# from all the lists. Do
- #Bnot# take the #Bsame one twice#. If a prime
- factor appears #Bmore than once#, take the one
- with the #Bhighest power#. #B2ê# ╫ #B3# ╫ #B5#
-
- @Wait 0.25
- @At ,+1
- The #Blowest common multiple# = #B60#
-
- @prompt
- @keyPoint 9999,summary (part 1)
-
-
- #BSummary#
- @Wait 0.75
- @At ,+2
-
- * #^#BLowest common multiples# are useful
- #Tin mathematics when dealing with
- #t#Bfractions#
- @Wait 0.75
- @At ,+2
- * #TTo add or subtract #Bfractions#, you
- #Tneed to find a #Bcommon denominator#.
- #TBy finding the #Blowest common multiple#
- #Tof the #Bdenominators# the amount of
- #Tcalculation, simplification and the size of
- #Tthe numbers are kept to a minimum.
- @Wait 0.75
- @At ,+2
- * #TUsing the lowest common multiple
- #Treduces the possibility of #Berrors#.
- @Wait 0.75
- @At 175,-2
- (#Bcontinued#)
-
-
-
- @prompt
- @keyPoint 9999,summary (part 2)
-
- #B(continued)#
-
- @Wait 0.75
- @At ,+5
- To find the #Blowest common multiple# of a set
- of numbers you need to draw up a list of the
- multiples of each until you find one common
- to all the lists.
- @Wait 0.75
- @At ,+5
- * #TFirst, #K185,*multiply by 2# to get the list going
- @Wait 0.75
- @At ,+5
- * #TThen #K186,multiply by one more than last#
- #t#K186,time#
- @Wait 0.75
- @At ,+5
- * #TRepeat until you find the #Blowest common#
- #T#Bmultiple#.
- @Wait 0.75
- @At ,+5
- @At 175,
- (#Bcontinued#)
-
-
-
- @prompt
- @keyPoint 9999,summary (part 3)
-
- #B(continued)#
-
- @Wait 0.75
- @At ,+4
-
- The previous method involves a lot of
- working out. For simple numbers you can
- often use #Btrial and improvement# methods
- more quickly and easily.
- @Wait 0.75
- @At ,+4
- The method that works well for larger
- numbers is:
- @Wait 0.75
- @At ,+4
- * #TFirst, #K187,find the prime factors of each#
- #T#K187, number#
- @Wait 0.75
- @At ,+4
- * #TTo find the #Blowest common multiple#,
- #Ttake the highest power of each prime
- #Tfactor and #K188,*find the product#.
- highest power of each prime
- #Tfactor and #K188,*find the product#.
- he #Bhighest power#. #B2ê# ╫ #B3# ╫ #B5#
-
- @Wait 0.25
- @At ,+1
- The #Blowest common multiple# = #B60#
-
- @prompt
- @keyPoint 9999,summary (part 1)
-
-
- #BSummary#
- @Wait 0.75
- @At ,+2
-
- * #^#BLowest common multiples# are useful
- #Tin mathematics when dealing with
- #t#Bfractions#
- @Wait 0.75
- @At ,+2
- * #TTo add or subtract #Bfractions#, you
- #Tneed to find a #Bcommon denominator#.
- #TBy finding the #Blowest common multiple#
- #Tof the #Bdenominators# the amount of
- #Tcalculation, simplification and the size of
- #Tthe numbers are kept to a minimum.
- @Wait 0.75
- @At ,+2
- * #TUsing the lowest common multiple
- #Treduces the possibility of #Berrors#.
- @Wait 0.75
- @At 175,-2
- (#Bcontinued#)
-
-
-
- @prompt
- @keyPoint 9999,summary (part 2)
-
- #B(continued)#
-
- @Wait 0.75
- @At ,+5
- To find the #Blowest common multiple# of a set
- of numbers you need to draw up a list of the
- multiples of each until you find one common
- to all the lists.
- @Wait 0.75
- @At ,+5
- * #TFirst, #K185,*multiply by 2# to get the list going
- @Wait 0.75
- @At ,+5
- * #TThen #K186,multiply by one more than last#
- #t#K186,time#
- @Wait 0.75
- @At ,+5
- * #TRepeat until you find the #Blowest common#
- #T#Bmultiple#.
- @Wait 0.75
- @At ,+5
- @At 175,
- (#Bcontinued#)
-
-
-
- @prompt
- @keyPoint 9999,summary (part 3)
-
- #B(continued)#
-
- @Wait 0.75
- @At ,+4
-
- The previous method involves a lot of
- working out. For simple numbers you can
- often use #Btrial and improvement# methods
- more quickly and easily.
- @Wait 0.75
- @At ,+4
- The method that works well for larger
- numbers is:
- @Wait 0.75
- @At ,+4
- * #TFirst, #K187,find the prime factors of each#
- #T#K187, number#
- @Wait 0.75
- @At ,+4
- * #TTo find the #Blowest common multiple#,
- #Ttake the highest power of each prime
- #Tfactor and #K188,*find the product#.
-